In topology and related branches of mathematics, a topological space X is a T0 space or Kolmogorov space if for every pair of distinct points of X, at least one of them has an open neighborhood not containing the other. This condition, called the T0 condition, is one of the separation axioms. Its intuitive meaning is that the points of X are topologically distinguishable. These spaces are named after Andrey Kolmogorov.
Read more about Kolmogorov Space: Definition, Examples and Nonexamples, Operating With T0 Spaces, The Kolmogorov Quotient, Removing T0
Famous quotes containing the word space:
“To play is nothing but the imitative substitution of a pleasurable, superfluous and voluntary action for a serious, necessary, imperative and difficult one. At the cradle of play as well as of artistic activity there stood leisure, tedium entailed by increased spiritual mobility, a horror vacui, the need of letting forms no longer imprisoned move freely, of filling empty time with sequences of notes, empty space with sequences of form.”
—Max J. Friedländer (18671958)