Inverse Transform Sampling - Proof of Correctness

Proof of Correctness

Let F be a continuous cumulative distribution function, and let F−1 be its inverse function (using the infimum because CDFs are weakly monotonic and right-continuous):

Claim: If U is a uniform random variable on (0, 1) then follows the distribution F.

Proof:


\begin{align}
& \Pr(F^{-1}(U) \leq x) \\
& {} = \Pr(\inf\;\{y \mid F(y)=U\} \leq x)\quad &\text{(by definition of }F^{-1}) \\
& {} = \Pr(U \leq F(x)) \quad &\text{(applying }F,\text{ which is monotonic, to both sides)} \\
& {} = F(x)\quad &\text{(because }\Pr(U \leq y) = y,\text{ since }U\text{ is uniform on the unit interval)}.
\end{align}

Read more about this topic:  Inverse Transform Sampling

Famous quotes containing the words proof of, proof and/or correctness:

    There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.
    Herman Melville (1819–1891)

    The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.
    Charles Baudelaire (1821–1867)

    The surest guide to the correctness of the path that women take is joy in the struggle. Revolution is the festival of the oppressed.
    Germaine Greer (b. 1939)