In probability and statistics, the quantile function, also called percent point function or inverse cumulative distribution function, of the probability distribution of a random variable specifies, for a given probability, the value which the random variable will be at, or below, with that probability. The quantile function is one way of prescribing a probability distribution, and it is an alternative to the probability density or mass function, the cumulative distribution function and the characteristic function. The quantile function, Q, of a probability distribution is the inverse of its cumulative distribution function (cdf) F. The derivative of the quantile function, namely the quantile density function, is yet another way of prescribing a probability distribution. It is the reciprocal of the pdf composed with the quantile function.
Read more about Quantile Function: Definition, Simple Example, Applications, Calculation, The Normal Distribution, The Student's T-distribution, Non-linear Differential Equations For Quantile Functions
Famous quotes containing the word function:
“Every boy was supposed to come into the world equipped with a father whose prime function was to be our father and show us how to be men. He can escape us, but we can never escape him. Present or absent, dead or alive, real or imagined, our father is the main man in our masculinity.”
—Frank Pittman (20th century)