Inverse Semigroup - Connections With Category Theory

Connections With Category Theory

The above composition of partial transformations of a set gives rise to a symmetric inverse semigroup. There is another way of composing partial transformations, which is more restrictive than that used above: two partial transformations α and β are composed if, and only if, the image of α is equal to the domain of β; otherwise, the composition αβ is undefined. Under this alternative composition, the collection of all partial one-one transformations of a set forms not an inverse semigroup but an inductive groupoid, in the sense of category theory. This close connection between inverse semigroups and inductive groupoids is embodied in the Ehresmann-Schein-Nambooripad Theorem, which states that an inductive groupoid can always be constructed from an inverse semigroup, and conversely. More precisely, an inverse semigroup is precisely a groupoid in the category of posets which is an etale groupoid with respect to its (dual) Alexandrov topology and whose poset of objects is a meet-semilattice.

Read more about this topic:  Inverse Semigroup

Famous quotes containing the words connections, category and/or theory:

    The connections between and among women are the most feared, the most problematic, and the most potentially transforming force on the planet.
    Adrienne Rich (b. 1929)

    Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.
    Vladimir Ilyich Lenin (1870–1924)

    The theory of truth is a series of truisms.
    —J.L. (John Langshaw)