In abstract algebra, the idea of an inverse element generalises the concept of a negation, in relation to addition, and a reciprocal, in relation to multiplication. The intuition is of an element that can 'undo' the effect of combination with another given element. While the precise definition of an inverse element varies depending on the algebraic structure involved, these definitions coincide in a group.
Read more about Inverse Element: Examples
Famous quotes containing the words inverse and/or element:
“The quality of moral behaviour varies in inverse ratio to the number of human beings involved.”
—Aldous Huxley (18941963)
“All forms of beauty, like all possible phenomena, contain an element of the eternal and an element of the transitoryof the absolute and of the particular. Absolute and eternal beauty does not exist, or rather it is only an abstraction creamed from the general surface of different beauties. The particular element in each manifestation comes from the emotions: and just as we have our own particular emotions, so we have our own beauty.”
—Charles Baudelaire (18211867)