Inverse Functions And Differentiation
In mathematics, the inverse of a function is a function that, in some fashion, "undoes" the effect of (see inverse function for a formal and detailed definition). The inverse of is denoted . The statements y = f(x) and x = f −1(y) are equivalent.
Their two derivatives, assuming they exist, are reciprocal, as the Leibniz notation suggests; that is:
This is a direct consequence of the chain rule, since
and the derivative of with respect to is 1.
Writing explicitly the dependence of on and the point at which the differentiation takes place and using Lagrange's notation, the formula for the derivative of the inverse becomes
Geometrically, a function and inverse function have graphs that are reflections, in the line y = x. This reflection operation turns the gradient of any line into its reciprocal.
Assuming that has an inverse in a neighbourhood of and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at and have a derivative given by the above formula.
Read more about Inverse Functions And Differentiation: Examples, Additional Properties, Higher Derivatives, Example
Famous quotes containing the words inverse and/or functions:
“Yet time and space are but inverse measures of the force of the soul. The spirit sports with time.”
—Ralph Waldo Emerson (18031882)
“When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconsciousto get rid of boundaries, not to create them.”
—Edward T. Hall (b. 1914)