Intrinsic Metric

Intrinsic Metric

In the mathematical study of metric spaces, one can consider the arclength of paths in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from one point to another along a path whose arclength is equal to (or very close to) that distance. The distance between two points of a metric space relative to the intrinsic metric is defined as the infimum of the length of all paths from one point to the other. A metric space is a length metric space if the intrinsic metric agrees with the original metric of the space.

Read more about Intrinsic Metric:  Definitions, Examples, Properties

Famous quotes containing the word intrinsic:

    Writing ought either to be the manufacture of stories for which there is a market demand—a business as safe and commendable as making soap or breakfast foods—or it should be an art, which is always a search for something for which there is no market demand, something new and untried, where the values are intrinsic and have nothing to do with standardized values.
    Willa Cather (1876–1947)