Interval Estimation

In statistics, interval estimation is the use of sample data to calculate an interval of possible (or probable) values of an unknown population parameter, in contrast to point estimation, which is a single number. Neyman (1937) identified interval estimation ("estimation by interval") as distinct from point estimation ("estimation by unique estimate"). In doing so, he recognised that then-recent work quoting results in the form of an estimate plus-or-minus a standard deviation indicated that interval estimation was actually the problem statisticians really had in mind.

The most prevalent forms of interval estimation are:

  • confidence intervals (a frequentist method); and
  • credible intervals (a Bayesian method).

Other common approaches to interval estimation, which are encompassed by statistical theory, are:

  • Tolerance intervals
  • Prediction intervals - used mainly in Regression Analysis
  • Likelihood intervals

There is a third approach to statistical inference, namely fiducial inference, that also considers interval estimation. Non-statistical methods that can lead to interval estimates include fuzzy logic.

An interval estimate is one type of outcome of a statistical analysis. Some other types of outcome are point estimates and decisions.

Read more about Interval Estimation:  Discussion, Behrens–Fisher Problem

Famous quotes containing the words interval and/or estimation:

    [I have] been in love with one princess or another almost all my life, and I hope I shall go on so, till I die, being firmly persuaded, that if ever I do a mean action, it must be in some interval betwixt one passion and another.
    Laurence Sterne (1713–1768)

    No man ever stood lower in my estimation for having a patch in his clothes; yet I am sure that there is greater anxiety, commonly, to have fashionable, or at least clean and unpatched clothes, than to have a sound conscience.
    Henry David Thoreau (1817–1862)