In statistics, a confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate. It is an observed interval (i.e. it is calculated from the observations), in principle different from sample to sample, that frequently includes the parameter of interest if the experiment is repeated. How frequently the observed interval contains the parameter is determined by the confidence level or confidence coefficient. More specifically, the meaning of the term "confidence level" is that, if confidence intervals are constructed across many separate data analyses of repeated (and possibly different) experiments, the proportion of such intervals that contain the true value of the parameter will match the confidence level; this is guaranteed by the reasoning underlying the construction of confidence intervals.
Confidence intervals consist of a range of values (interval) that act as good estimates of the unknown population parameter. However, in infrequent cases, none of these values may cover the value of the parameter. The level of confidence of the confidence interval would indicate the probability that the confidence range captures this true population parameter given a distribution of samples. It does not describe any single sample. This value is represented by a percentage, so when we say, "we are 99% confident that the true value of the parameter is in our confidence interval", we express that 99% of the observed confidence intervals will hold the true value of the parameter. After a sample is taken, the population parameter is either in the interval made or not, there is no chance. The desired level of confidence is set by the researcher (not determined by data) . If a corresponding hypothesis test is performed, the confidence level corresponds with the level of significance, i.e. a 95% confidence interval reflects a significance level of 0.05, and the confidence interval contains the parameter values that, when tested, should not be rejected with the same sample. Greater levels of confidence give larger confidence intervals, and hence less precise estimates of the parameter. Confidence intervals of difference parameters not containing 0 imply that there is a statistically significant difference between the populations.
Certain factors may affect the confidence interval size including size of sample, level of confidence, and population variability. A larger sample size normally will lead to a better estimate of the population parameter.
A confidence interval does not predict that the true value of the parameter has a particular probability of being in the confidence interval given the data actually obtained. (An interval intended to have such a property, called a credible interval, can be estimated using Bayesian methods; but such methods bring with them their own distinct strengths and weaknesses).
Read more about Confidence Interval: Relation To Hypothesis Testing, Meaning and Interpretation, Alternatives and Critiques, Confidence Intervals For Proportions and Related Quantities
Famous quotes containing the words confidence and/or interval:
“It is easy to lose confidence in our natural ability to raise children. The true techniques for raising children are simple: Be with them, play with them, talk to them. You are not squandering their time no matter what the latest child development books say about purposeful play and cognitive learning skills.”
—Neil Kurshan (20th century)
“[I have] been in love with one princess or another almost all my life, and I hope I shall go on so, till I die, being firmly persuaded, that if ever I do a mean action, it must be in some interval betwixt one passion and another.”
—Laurence Sterne (17131768)