Definition For Riemann Surfaces
Let X be a Riemann surface. Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function ), we can associate a differential form with the pleasant property that integrals along c can be calculated by integrals over X:
- , for every closed (1-)differential on X,
where is the wedge product of differentials, and is the hodge star. Then the intersection number of two closed curves, a and b, on X is defined as
- .
The have an intuitive definition as follows. They are a sort of dirac delta along the curve c, accomplished by taking the differential of a unit step function that drops from 1 to 0 across c. More formally, we begin by defining for a simple closed curve c on X, a function fc by letting be a small strip around c in the shape of an annulus. Name the left and right parts of as and . Then take a smaller sub-strip around c, with left and right parts and . Then define fc by
- .
The definition is then expanded to arbitrary closed curves. Every closed curve c on X is homologous to for some simple closed curves ci, that is,
- , for every differential .
Define the by
- .
Read more about this topic: Intersection Number
Famous quotes containing the words definition and/or surfaces:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“But ice-crunching and loud gum-chewing, together with drumming on tables, and whistling the same tune seventy times in succession, because they indicate an indifference on the part of the perpetrator to the rest of the world in general, are not only registered on the delicate surfaces of the brain but eat little holes in it until it finally collapses or blows up.”
—Robert Benchley (18891945)