Intersection Number

In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.

The intersection number is obvious in certain cases, such as the intersection of x- and y-axes which should be one. The complexity enters when calculating intersections at points of tangency and intersections along positive dimensional sets. For example if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory.

Read more about Intersection Number:  Definition For Riemann Surfaces, Definition For Algebraic Varieties, Further Definitions, Intersection Multiplicities For Plane Curves, Self-intersections, Applications

Famous quotes containing the words intersection and/or number:

    You can always tell a Midwestern couple in Europe because they will be standing in the middle of a busy intersection looking at a wind-blown map and arguing over which way is west. European cities, with their wandering streets and undisciplined alleys, drive Midwesterners practically insane.
    Bill Bryson (b. 1951)

    How often should a woman be pregnant? Continually, or hardly ever? Or must there be a certain number of pregnancy anniversaries established by fashion? What do you, at the age of forty-three, have to say on the subject? Is it a fact that the laws of nature, or of the country, or of propriety, have ordained this time of life for sterility?
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)