Internal Sets in The Ultrapower Construction
Relative to the ultrapower construction of the hyperreal numbers as equivalence classes of sequences, an internal subset of *R is one defined by a sequence of real sets, where a hyperreal is said to belong to the set if and only if the set of indices n such that, is a member of the ultrafilter used in the construction of *R.
More generally, an internal entity is a member of the natural extension of a real entity. Thus, every element of *R is internal; a subset of *R is internal if and only if it is a member of the natural extension of the power set of R; etc.
Read more about this topic: Internal Set
Famous quotes containing the words internal, sets and/or construction:
“We all run on two clocks. One is the outside clock, which ticks away our decades and brings us ceaselessly to the dry season. The other is the inside clock, where you are your own timekeeper and determine your own chronology, your own internal weather and your own rate of living. Sometimes the inner clock runs itself out long before the outer one, and you see a dead man going through the motions of living.”
—Max Lerner (b. 1902)
“In the beautiful, man sets himself up as the standard of perfection; in select cases he worships himself in it.... Man believes that the world itself is filled with beautyhe forgets that it is he who has created it. He alone has bestowed beauty upon the worldalas! only a very human, an all too human, beauty.”
—Friedrich Nietzsche (18441900)
“Theres no art
To find the minds construction in the face:
He was a gentleman on whom I built
An absolute trust.”
—William Shakespeare (15641616)