In mathematical logic, in particular in model theory and non-standard analysis, an internal set is a set that is a member of a model.
The concept of internal sets is a tool in formulating the transfer principle, which concerns the logical relation between the properties of the real numbers R, and the properties of a larger field denoted *R called the hyperreal numbers. The field *R includes, in particular, infinitesimal ("infinitely small") numbers, providing a rigorous mathematical justification for their use. Roughly speaking, the idea is to express analysis over R in a suitable language of mathematical logic, and then point out that this language applies equally well to *R. This turns out to be possible because at the set-theoretic level, the propositions in such a language are interpreted to apply only to internal sets rather than to all sets (note that the term "language" is used in a loose sense in the above).
Edward Nelson's internal set theory is not a constructivist version of non-standard analysis (but see Palmgren at constructive non-standard analysis). Its name should not mislead the reader: conventional infinitary accounts of non-standard analysis also use the concept of internal sets.
Read more about Internal Set: Internal Sets in The Ultrapower Construction, Internal Subsets of The Reals
Famous quotes containing the words internal and/or set:
“When a person doesnt understand something, he feels internal discord: however he doesnt search for that discord in himself, as he should, but searches outside of himself. Thence a war develops with that which he doesnt understand.”
—Anton Pavlovich Chekhov (18601904)
“What these perplexities of my uncle Toby were,tis impossible for you to guess;Mif you could,I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,I would tear it out of my book.”
—Laurence Sterne (17131768)