Higher Dimensions
The formula for integration by parts can be extended to functions of several variables. Instead of an interval one needs to integrate over an n-dimensional set. Also, one replaces the derivative with a partial derivative.
More specifically, suppose Ω is an open bounded subset of with a piecewise smooth boundary Γ. If u and v are two continuously differentiable functions on the closure of Ω, then the formula for integration by parts is
where is the outward unit surface normal to, is its i-th component, and i ranges from 1 to n.
By replacing v in the above formula with vi and summing over i gives the vector formula
where v is a vector-valued function with components v1, ..., vn.
Setting u equal to the constant function 1 in the above formula gives the divergence theorem
For where, one gets
which is the first Green's identity.
The regularity requirements of the theorem can be relaxed. For instance, the boundary Γ need only be Lipschitz continuous. In the first formula above, only is necessary (where H1 is a Sobolev space); the other formulas have similarly relaxed requirements.
Read more about this topic: Integration By Parts
Famous quotes containing the words higher and/or dimensions:
“For the most part we think that there are few degrees of sublimity, and that the highest is but little higher than that which we now behold; but we are always deceived. Sublimer visions appear, and the former pale and fade away.”
—Henry David Thoreau (18171862)
“It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?or animals?even forests or oceans or rocks?in this world of ours or, even, in worlds or dimensions elsewhere.”
—Doris Lessing (b. 1919)