Integration By Parts - Higher Dimensions

Higher Dimensions

The formula for integration by parts can be extended to functions of several variables. Instead of an interval one needs to integrate over an n-dimensional set. Also, one replaces the derivative with a partial derivative.

More specifically, suppose Ω is an open bounded subset of with a piecewise smooth boundary Γ. If u and v are two continuously differentiable functions on the closure of Ω, then the formula for integration by parts is

where is the outward unit surface normal to, is its i-th component, and i ranges from 1 to n.

By replacing v in the above formula with vi and summing over i gives the vector formula

where v is a vector-valued function with components v1, ..., vn.

Setting u equal to the constant function 1 in the above formula gives the divergence theorem

For where, one gets

which is the first Green's identity.

The regularity requirements of the theorem can be relaxed. For instance, the boundary Γ need only be Lipschitz continuous. In the first formula above, only is necessary (where H1 is a Sobolev space); the other formulas have similarly relaxed requirements.

Read more about this topic:  Integration By Parts

Famous quotes containing the words higher and/or dimensions:

    Nature uses human imagination to lift her work of creation to even higher levels.
    Luigi Pirandello (1867–1936)

    Why is it that many contemporary male thinkers, especially men of color, repudiate the imperialist legacy of Columbus but affirm dimensions of that legacy by their refusal to repudiate patriarchy?
    bell hooks (b. c. 1955)