Integration By Parts

In calculus, and more generally in mathematical analysis, integration by parts is a theorem that relates the integral of a product of functions to the integral of their derivative and antiderivative. It is frequently used to find the antiderivative of a product of functions into an ideally simpler antiderivative. The rule can be derived in one line by simply integrating the product rule of differentiation.

If u = u(x), v = v(x), and the differentials du = u '(x) dx and dv = v'(x) dx, then integration by parts states that

or more compactly:

More general formulations of integration by parts exist for the Riemann–Stieltjes integral and Lebesgue–Stieltjes integral. One can also formulate a discrete analogue for sequences, called summation by parts.

Read more about Integration By Parts:  Visualisation, Recursive Integration By Parts, Higher Dimensions, Infinite Congruence Theorem

Famous quotes containing the words integration and/or parts:

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    To give an accurate description of what has never occurred is not merely the proper occupation of the historian, but the inalienable privilege of any man of parts and culture.
    Oscar Wilde (1854–1900)