Use in Solving First Order Linear Ordinary Differential Equations
Integrating factors are useful for solving ordinary differential equations that can be expressed in the form
The basic idea is to find some function, called the "integrating factor," which we can multiply through our DE in order to bring the left-hand side under a common derivative. For the canonical first-order, linear differential equation shown above, our integrating factor is chosen to be
We see that multiplying through by gives
By applying the product rule in reverse, we see that the left-hand side can be expressed as a single derivative in
We use this fact to simplify our expression to
We then integrate both sides with respect to, obtaining
Finally, we can move the exponential to the right-hand side to find a general solution to our ODE:
In the case of a homogeneous differential equation, in which, we find that
where is a constant.
Read more about this topic: Integrating Factor
Famous quotes containing the words solving, order, ordinary and/or differential:
“There are horrible people who, instead of solving a problem, tangle it up and make it harder to solve for anyone who wants to deal with it. Whoever does not know how to hit the nail on the head should be asked not to hit it at all.”
—Friedrich Nietzsche (18441900)
“It seems only yesterday that we saw
The movie with the cows in it
And turned to one at your side, who burped
As morning saw a new garnet-and-pea-green order propose
Itself out of the endless bathos, like science-fiction lumps.”
—John Ashbery (b. 1927)
“... in ordinary fiction, movies, etc. everything is smoothed out to seem plausiblevillains made bad, heroes splendid, heroines glamorous, and so on, so that no one believes a word of it.”
—Brenda Ueland (18911985)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)