Integrating Factor - Use in Solving First Order Linear Ordinary Differential Equations

Use in Solving First Order Linear Ordinary Differential Equations

Integrating factors are useful for solving ordinary differential equations that can be expressed in the form

The basic idea is to find some function, called the "integrating factor," which we can multiply through our DE in order to bring the left-hand side under a common derivative. For the canonical first-order, linear differential equation shown above, our integrating factor is chosen to be

We see that multiplying through by gives

By applying the product rule in reverse, we see that the left-hand side can be expressed as a single derivative in

We use this fact to simplify our expression to

We then integrate both sides with respect to, obtaining

Finally, we can move the exponential to the right-hand side to find a general solution to our ODE:

In the case of a homogeneous differential equation, in which, we find that

where is a constant.


Read more about this topic:  Integrating Factor

Famous quotes containing the words solving, order, ordinary and/or differential:

    If we parents accept that problems are an essential part of life’s challenges, rather than reacting to every problem as if something has gone wrong with universe that’s supposed to be perfect, we can demonstrate serenity and confidence in problem solving for our kids....By telling them that we know they have a problem and we know they can solve it, we can pass on a realistic attitude as well as empower our children with self-confidence and a sense of their own worth.
    Barbara Coloroso (20th century)

    In order to exist just once in the world, it is necessary never again to exist.
    Albert Camus (1913–1960)

    The Anglican Church is marked by the grace and good sense of its forms, by the manly grace of its clergy. The gospel it preaches is, “By taste are ye saved.” ... It is not in ordinary a persecuting church; it is not inquisitorial, not even inquisitive, is perfectly well bred and can shut its eyes on all proper occasions. If you let it alone, it will let you alone. But its instinct is hostile to all change in politics, literature, or social arts.
    Ralph Waldo Emerson (1803–1882)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)