Integral Equation - Integral Equations As A Generalization of Eigenvalue Equations

Integral Equations As A Generalization of Eigenvalue Equations

Certain homogeneous linear integral equations can be viewed as the continuum limit of eigenvalue equations. Using index notation, an eigenvalue equation can be written as

,

where is a matrix, is one of its eigenvectors, and is the associated eigenvalue.

Taking the continuum limit, by replacing the discrete indices and with continuous variables and, gives

,

where the sum over has been replaced by an integral over and the matrix and vector have been replaced by the 'kernel' and the eigenfunction . (The limits on the integral are fixed, analogously to the limits on the sum over .) This gives a linear homogeneous Fredholm equation of the second type.

In general, can be a distribution, rather than a function in the strict sense. If the distribution has support only at the point, then the integral equation reduces to a differential eigenfunction equation.

Read more about this topic:  Integral Equation

Famous quotes containing the word integral:

    Self-centeredness is a natural outgrowth of one of the toddler’s major concerns: What is me and what is mine...? This is why most toddlers are incapable of sharing ... to a toddler, what’s his is what he can get his hands on.... When something is taken away from him, he feels as though a piece of him—an integral piece—is being torn from him.
    Lawrence Balter (20th century)