Algebraic Geometry
In algebraic geometry, integral domains correspond to irreducible varieties. From the point of view of scheme theory, they have a unique generic point, given by the zero ideal. Integral domains are also characterized by the condition that they are reduced and irreducible. The former condition ensures that the nilradical of the ring is zero, so that the intersection of all the ring's minimal primes is zero. The latter condition is that the ring have only one minimal prime. It follows that the unique minimal prime ideal of a reduced and irreducible ring is the zero ideal, hence such rings are integral domains. The converse is clear: No integral domain can have nilpotent elements, and the zero ideal is the unique minimal prime ideal.
Read more about this topic: Integral Domain
Famous quotes containing the words algebraic and/or geometry:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.”
—Ralph Waldo Emerson (18031882)