Field of Fractions

In abstract algebra, the field of fractions or field of quotients of an integral domain is the smallest field in which it can be embedded. The elements of the field of fractions of the integral domain R have the form a/b with a and b in R and b ≠ 0. The field of fractions of R is sometimes denoted by Quot(R) or Frac(R).

Mathematicians refer to this construction as the quotient field, field of fractions, or fraction field. All three are in common usage, and which is used is a matter of personal taste. The expression "quotient field" may sometimes run the risk of confusion with the quotient of a ring by an ideal, which is a quite different concept.

A multiplicative identity is not required for the role of the integral domain; this construction can be applied to any non-trivial commutative pseudo-ring with no zero divisors.

Read more about Field Of Fractions:  Examples, Construction

Famous quotes containing the words field of and/or field:

    I would say that deconstruction is affirmation rather than questioning, in a sense which is not positive: I would distinguish between the positive, or positions, and affirmations. I think that deconstruction is affirmative rather than questioning: this affirmation goes through some radical questioning, but it is not questioning in the field of analysis.
    Jacques Derrida (b. 1930)

    Yet, hermit and stoic as he was, he was really fond of sympathy, and threw himself heartily and childlike into the company of young people whom he loved, and whom he delighted to entertain, as he only could, with the varied and endless anecdotes of his experiences by field and river: and he was always ready to lead a huckleberry-party or a search for chestnuts and grapes.
    Ralph Waldo Emerson (1803–1882)