Integrability Conditions For Differential Systems - Examples of Applications

Examples of Applications

In Riemannian geometry, we may consider the problem of finding an orthogonal coframe θi, i.e., a collection of 1-forms forming a basis of the cotangent space at every point with which are closed (dθi = 0, i=1,2, ..., n). By the Poincaré lemma, the θi locally will have the form dxi for some functions xi on the manifold, and thus provide an isometry of an open subset of M with an open subset of Rn. Such a manifold is called locally flat.

This problem reduces to a question on the coframe bundle of M. Suppose we had such a closed coframe

.

If we had another coframe, then the two coframes would be related by an orthogonal transformation

If the connection 1-form is ω, then we have

On the other hand,


\begin{align}
d\Phi & = (dM)\wedge\Theta+M\wedge d\Theta \\
& =(dM)\wedge\Theta \\
& =(dM)M^{-1}\wedge\Phi.
\end{align}

But is the Maurer–Cartan form for the orthogonal group. Therefore it obeys the structural equation and this is just the curvature of M: After an application of the Frobenius theorem, one concludes that a manifold M is locally flat if and only if its curvature vanishes.

Read more about this topic:  Integrability Conditions For Differential Systems

Famous quotes containing the words examples of and/or examples:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)