Integrability Conditions For Differential Systems

Integrability Conditions For Differential Systems

In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of the way a differential form restricts to a submanifold, and the fact that this restriction is compatible with the exterior derivative. This is one possible approach to certain over-determined systems, for example. A Pfaffian system is one specified by 1-forms alone, but the theory includes other types of example of differential system.

Given a collection of differential 1-forms αi, i=1,2, ..., k on an n-dimensional manifold M, an integral manifold is a submanifold whose tangent space at every point pM is annihilated by each αi.

A maximal integral manifold is a submanifold

such that the kernel of the restriction map on forms

is spanned by the αi at every point p of N. If in addition the αi are linearly independent, then N is (nk)-dimensional. Note that i: NM need not be an embedded submanifold.

A Pfaffian system is said to be completely integrable if N admits a foliation by maximal integral manifolds. (Note that the foliation need not be regular; i.e. the leaves of the foliation might not be embedded submanifolds.)

An integrability condition is a condition on the αi to guarantee that there will be integral submanifolds of sufficiently high dimension.

Read more about Integrability Conditions For Differential Systems:  Necessary and Sufficient Conditions, Example of A Non-integrable System, Examples of Applications, Generalizations, Further Reading

Famous quotes containing the words conditions, differential and/or systems:

    Among the laws controlling human societies there is one more precise and clearer, it seems to me, than all the others. If men are to remain civilized or to become civilized, the art of association must develop and improve among them at the same speed as equality of conditions spreads.
    Alexis de Tocqueville (1805–1859)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    Our little systems have their day;
    They have their day and cease to be:
    They are but broken lights of thee,
    And thou, O Lord, art more than they.
    Alfred Tennyson (1809–1892)