Inner Product Space - Operators On Inner Product Spaces

Operators On Inner Product Spaces

Several types of linear maps A from an inner product space V to an inner product space W are of relevance:

  • Continuous linear maps, i.e., A is linear and continuous with respect to the metric defined above, or equivalently, A is linear and the set of non-negative reals {||Ax||}, where x ranges over the closed unit ball of V, is bounded.
  • Symmetric linear operators, i.e., A is linear and ⟨Ax, y⟩ = ⟨x, Ay⟩ for all x, y in V.
  • Isometries, i.e., A is linear and ⟨Ax, Ay⟩ = ⟨x, y⟩ for all x, y in V, or equivalently, A is linear and ||Ax|| = ||x|| for all x in V. All isometries are injective. Isometries are morphisms between inner product spaces, and morphisms of real inner product spaces are orthogonal transformations (compare with orthogonal matrix).
  • Isometrical isomorphisms, i.e., A is an isometry which is surjective (and hence bijective). Isometrical isomorphisms are also known as unitary operators (compare with unitary matrix).

From the point of view of inner product space theory, there is no need to distinguish between two spaces which are isometrically isomorphic. The spectral theorem provides a canonical form for symmetric, unitary and more generally normal operators on finite dimensional inner product spaces. A generalization of the spectral theorem holds for continuous normal operators in Hilbert spaces.

Read more about this topic:  Inner Product Space

Famous quotes containing the words product and/or spaces:

    Poetry is the only life got, the only work done, the only pure product and free labor of man, performed only when he has put all the world under his feet, and conquered the last of his foes.
    Henry David Thoreau (1817–1862)

    When I consider the short duration of my life, swallowed up in the eternity before and after, the little space which I fill and even can see, engulfed in the infinite immensity of spaces of which I am ignorant and which know me not, I am frightened and am astonished at being here rather than there. For there is no reason why here rather than there, why now rather than then.
    Blaise Pascal (1623–1662)