Formal Definition
We want the dimension of a point to be 0, and a point has empty boundary, so we start with
Then inductively, ind(X) is the smallest n such that, for every and every open set U containing x, there is an open V containing x, where the closure of V is a subset of U, such that the boundary of V has small inductive dimension less than or equal to n − 1. (In the case above, where X is Euclidean n-dimensional space, V will be chosen to be an n-dimensional ball centered at x.)
For the large inductive dimension, we restrict the choice of V still further; Ind(X) is the smallest n such that, for every closed subset F of every open subset U of X, there is an open V in between (that is, F is a subset of V and the closure of V is a subset of U), such that the boundary of V has large inductive dimension less than or equal to n − 1.
Read more about this topic: Inductive Dimension
Famous quotes containing the words formal and/or definition:
“It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between ideas and things, both of which he assumes as given; he need not inquire whether either sphere is real or whether, in the final analysis, reality consists in their interaction.”
—Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)