In the mathematical field of topology, the inductive dimension of a topological space X is either of two values, the small inductive dimension ind(X) or the large inductive dimension Ind(X). These are based on the observation that, in n-dimensional Euclidean space Rn, (n − 1)-dimensional spheres (that is, the boundaries of n-dimensional balls) have dimension n − 1. Therefore it should be possible to define the dimension of a space inductively in terms of the dimensions of the boundaries of suitable open sets.
The small and large inductive dimensions are two of the three most usual ways of capturing the notion of "dimension" for a topological space, in a way that depends only on the topology (and not, say, on the properties of a metric space). The other is the Lebesgue covering dimension. The term "topological dimension" is ordinarily understood to refer to Lebesgue covering dimension. For "sufficiently nice" spaces, the three measures of dimension are equal.
Read more about Inductive Dimension: Formal Definition, Relationship Between Dimensions
Famous quotes containing the word dimension:
“By intervening in the Vietnamese struggle the United States was attempting to fit its global strategies into a world of hillocks and hamlets, to reduce its majestic concerns for the containment of communism and the security of the Free World to a dimension where governments rose and fell as a result of arguments between two colonels wives.”
—Frances Fitzgerald (b. 1940)