Indexed Color - Pixel Bits Arrangements

Pixel Bits Arrangements

Except for very low resolution graphic modes, early home and personal computers rarely implemented an "all-pixels-addressable" design - that is, the ability to change a single pixel to any of the available colors independently. Their limitations came from employing separate color attribute or color RAM areas, leading to attribute clash effects. Also, the pixel bits and/or the scan lines of the video memory were commonly arranged in odd ways convenient for the video generator hardware (thus saving hardware costs in a cost-competitive market), but sometimes creating difficulty for the people writing graphics programs. A pixel's bits in indexed-color, all-pixel-addressable images are not always contiguous in video memory or image files (i.e., chunky organization is not always used.) Some video hardware, such as the 16-color graphic modes of the Enhanced Graphics Adapter (EGA) and Video Graphics Array (VGA) for IBM PC compatibles or the Amiga video buffer are arranged as a series of bit planes (in a configuration called planar), in which the related bits of a single pixel are split among several independent bitmaps. Thus, the pixel bits are conceptually aligned along the 3D Z-axis. (The "depth" concept here is not the same as that of pixel depth.)

Early image file formats, as PIC, stored little more than a bare memory dump of the video buffer of a given machine.

Some indexed-color image file formats as Graphics Interchange Format (GIF) allow the image's scan lines to be arranged in interleaved fashion (not linear order), which allows a low resolution version of the image to appear on screen while it is still downloading, so that the computer user can gain an idea of its contents during the seconds before the whole image arrives. Here is an example of a typical vertically interleaved download in four steps:

As seen here, the image has been divided into four groups of lines: group A contains every fourth line, group B contains lines immediately following ones in group A, group C likewise contains the lines immediately following those in group B, and group D contains the remaining lines, which are between group C lines (immediately above) and group A lines (immediately below). These are stored into the file in the order A, C, B, D, so that when the file is transmitted the second received group (C) of lines lie centered between the lines of the first group, yielding the most spatially uniform and recognizable image possible, composed of only two of the groups of lines. The same technique can be applied with more groups (e.g. eight), in which case at each step the next group to be sent contains lines lying at or near the centers of remaining bands that are not yet filled with image data. This method, with four or eight groups of lines, was commonly used on the early World Wide Web during the second half of the 1990s. Rather than leaving the background (black) showing as in the illustration above, the partial image was often presented on screen by duplicating each line to fill the space below it down to the next received image line. The end result was a continuous image with decreased vertical resolution that would increase to full resolution over a few seconds as the later parts of the image data arrived.

Read more about this topic:  Indexed Color

Famous quotes containing the words bits and/or arrangements:

    On their slag heap, these children
    Wear skins peeped through by bones and spectacles of steel
    With mended glass, like bottle bits in slag.
    Stephen Spender (1909–1995)

    Autonomy means women defining themselves and the values by which they will live, and beginning to think of institutional arrangements which will order their environment in line with their needs.... Autonomy means moving out from a world in which one is born to marginality, to a past without meaning, and a future determined by others—into a world in which one acts and chooses, aware of a meaningful past and free to shape one’s future.
    Gerda Lerner (b. 1920)