Model Based Segmentation
The central assumption of such an approach is that structures of interest/organs have a repetitive form of geometry. Therefore, one can seek for a probabilistic model towards explaining the variation of the shape of the organ and then when segmenting an image impose constraints using this model as prior. Such a task involves (i) registration of the training examples to a common pose, (ii) probabilistic representation of the variation of the registered samples, and (iii) statistical inference between the model and the image. State of the art methods in the literature for knowledge-based segmentation involve active shape and appearance models, active contours and deformable templates and level-set based methods.
Read more about this topic: Image Segmentation
Famous quotes containing the words model and/or based:
“Your home is regarded as a model home, your life as a model life. But all this splendor, and you along with it ... its just as though it were built upon a shifting quagmire. A moment may come, a word can be spoken, and both you and all this splendor will collapse.”
—Henrik Ibsen (18281906)
“What strikes many twin researchers now is not how much identical twins are alike, but rather how different they are, given the same genetic makeup....Multiples dont walk around in lockstep, talking in unison, thinking identical thoughts. The bond for normal twins, whether they are identical or fraternal, is based on how they, as individuals who are keenly aware of the differences between them, learn to relate to one another.”
—Pamela Patrick Novotny (20th century)