In mathematics, a level set of a real-valued function f of n variables is a set of the form
that is, a set where the function takes on a given constant value c.
When the number of variables is two, a level set is generically a curve, called a level curve, contour line, or isoline. When n = 3, a level set is called a level surface (see also isosurface), and for higher values of n the level set is a level hypersurface.
A set of the form
is called a sublevel set of f (or, alternatively, a lower level set or trench of f).
is called a superlevel set of f.
A level set is a special case of a fiber.
Read more about Level Set: Properties
Famous quotes containing the words level and/or set:
“To Time it never seems that he is brave
To set himself against the peaks of snow
To lay them level with the running wave,
Nor is he overjoyed when they lie low,
But only grave, contemplative and grave.”
—Robert Frost (18741963)
“The spiral is a spiritualized circle. In the spiral form, the circle, uncoiled, unwound, has ceased to be vicious; it has been set free.”
—Vladimir Nabokov (18991977)