History
Kummer first published the failure of unique factorization in cyclotomic fields in 1844 in an obscure journal; it was reprinted in 1847 in Liouville's journal. In subsequent papers in 1846 and 1847 he published his main theorem, the unique factorization into (actual and ideal) primes.
It is widely believed that Kummer was led to his "ideal complex numbers" by his interest in Fermat's Last Theorem; there is even a story often told that Kummer, like Lamé, believed he had proven Fermat's Last Theorem until Dirichlet told him his argument relied on unique factorization; but the story was first told by Kurt Hensel in 1910 and the evidence indicates it likely derives from a confusion by one of Hensel's sources. Harold Edwards says the belief that Kummer was mainly interested in Fermat's Last Theorem "is surely mistaken" (op cit p. 79). Kummer's use of the letter λ to represent a prime number, α to denote a λth root of unity, and his study of the factorization of prime number into "complex numbers composed of th roots of unity" all derive directly from a paper of Jacobi which is concerned with higher reciprocity laws. Kummer's 1844 memoir was in honor of the jubilee celebration of the University of Königsberg and was meant as a tribute to Jacobi. Although Kummer had studied Fermat's Last Theorem in the 1830s and was probably aware that his theory would have implications for its study, it is more likely that the subject of Jacobi's (and Gauss's) interest, higher reciprocity laws, held more importance for him. Kummer referred to his own partial proof of Fermat's Last Theorem for regular primes as "a curiosity of number theory rather than a major item" and to the higher reciprocity law (which he stated as a conjecture) as "the principal subject and the pinnacle of contemporary number theory." On the other hand, this latter pronouncement was made when Kummer was still excited about the success of his work on reciprocity and when his work on Fermat's Last Theorem was running out of steam, so it may perhaps be taken with some skepticism.
The extension of Kummer's ideas to the general case was accomplished independently by Kronecker and Dedekind during the next forty years. A direct generalization encountered formidable difficulties, and it eventually led Dedekind to the creation of the theory of modules and ideals. Kronecker dealt with the difficulties by developing a theory of forms (a generalization of quadratic forms) and a theory of divisors. Dedekind's contribution would become the basis of ring theory and abstract algebra, while Kronecker's would become major tools in algebraic geometry.
Read more about this topic: Ideal Number
Famous quotes containing the word history:
“The awareness that health is dependent upon habits that we control makes us the first generation in history that to a large extent determines its own destiny.”
—Jimmy Carter (James Earl Carter, Jr.)
“In history as in human life, regret does not bring back a lost moment and a thousand years will not recover something lost in a single hour.”
—Stefan Zweig (18811942)
“I believe that in the history of art and of thought there has always been at every living moment of culture a will to renewal. This is not the prerogative of the last decade only. All history is nothing but a succession of crisesMof rupture, repudiation and resistance.... When there is no crisis, there is stagnation, petrification and death. All thought, all art is aggressive.”
—Eugène Ionesco (b. 1912)