Ideal Number

In number theory an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings. An ideal in the ring of integers of an algebraic number field is principal if it consists of multiples of a single element of the ring, and nonprincipal otherwise. By the principal ideal theorem any nonprincipal ideal becomes principal when extended to an ideal of the Hilbert class field. This means that there is an element of the ring of integers of the Hilbert class field, which is an ideal number, such that the original nonprincipal ideal is equal to the collection of all multiples of this ideal number by elements of this ring of integers that lie in the original field's ring of integers.

Read more about Ideal Number:  Example, History

Famous quotes containing the words ideal and/or number:

    “The ideal reasoner,” he remarked, “would, when he had once been shown a single fact in all its bearings, deduce from it not only all the chain of events which led up to it but also all the results which would follow from it.”
    Sir Arthur Conan Doyle (1859–1930)

    One may confidently assert that when thirty thousand men fight a pitched battle against an equal number of troops, there are about twenty thousand on each side with the pox.
    Voltaire [François Marie Arouet] (1694–1778)