Hyperreal Number - Properties of Infinitesimal and Infinite Numbers

Properties of Infinitesimal and Infinite Numbers

The finite elements F of *R form a local ring, and in fact a valuation ring, with the unique maximal ideal S being the infinitesimals; the quotient F/S is isomorphic to the reals. Hence we have a homomorphic mapping, st(x), from F to R whose kernel consists of the infinitesimals and which sends every element x of F to a unique real number whose difference from x is in S; which is to say, is infinitesimal. Put another way, every finite nonstandard real number is "very close" to a unique real number, in the sense that if x is a finite nonstandard real, then there exists one and only one real number st(x) such that x – st(x) is infinitesimal. This number st(x) is called the standard part of x, conceptually the same as x to the nearest real number. This operation is an order-preserving homomorphism and hence is well-behaved both algebraically and order theoretically. It is order-preserving though not isotonic, i.e. implies, but does not imply .

  • We have, if both x and y are finite,
  • If x is finite and not infinitesimal.
  • x is real if and only if

The map st is continuous with respect to the order topology on the finite hyperreals; in fact it is locally constant.

Read more about this topic:  Hyperreal Number

Famous quotes containing the words properties of, properties, infinite and/or numbers:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    His hair has the long jesuschrist look. He is wearing the costume clothes. But most of all, he now has a very tolerant and therefore withering attitude toward all those who are still struggling in the old activist political ways ... while he, with the help of psychedelic chemicals, is exploring the infinite regions of human consciousness.
    Tom Wolfe (b. 1931)

    The barriers of conventionality have been raised so high, and so strangely cemented by long existence, that the only hope of overthrowing them exists in the union of numbers linked together by common opinion and effort ... the united watchword of thousands would strike at the foundation of the false system and annihilate it.
    Mme. Ellen Louise Demorest 1824–1898, U.S. women’s magazine editor and woman’s club movement pioneer. Demorest’s Illustrated Monthly and Mirror of Fashions, p. 203 (January 1870)