Properties
The hyperreals *R form an ordered field containing the reals R as a subfield. Unlike the reals, the hyperreals do not form a standard metric space, but by virtue of their order they carry an order topology.
The use of the definite article the in the phrase the hyperreal numbers is somewhat misleading in that there is not a unique ordered field that is referred to in most treatments. However, a 2003 paper by Vladimir Kanovei and Shelah shows that there is a definable, countably saturated (meaning ω-saturated, but not of course countable) elementary extension of the reals, which therefore has a good claim to the title of the hyperreal numbers. Furthermore, the field obtained by the ultrapower construction from the space of all real sequences, is unique up to isomorphism if one assumes the continuum hypothesis.
The condition of being a hyperreal field is a stronger one than that of being a real closed field strictly containing R. It is also stronger than that of being a superreal field in the sense of Dales and Woodin.
Read more about this topic: Hyperreal Number
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)