Elements Other Than Points
The equation of a line in the projective plane may be given as sx + ty + uz = 0 where s, t and u are constants. Each triple (s, t, u) determines a line, the line determined is unchanged if it is multiplied by a nonzero scalar, and at least one of s, t and u must be non-zero. So the triple (s, t, u) may be taken to be homogeneous coordinates of a line in the projective plane, that is line coordinates as opposed to point coordinates. If in sx + ty + uz = 0 the letters s, t and u are taken as variables and x, y and z are taken as constants then equation becomes an equation of a set of lines in the space of all lines in the plane. Geometrically it represents the set of lines that pass though the point (x, y, z) and may be interpreted as the equation of the point in line-coordinates. In the same way, planes in 3-space may be given sets of four homogeneous coordinates, and so on for higher dimensions.
Read more about this topic: Homogeneous Coordinates
Famous quotes containing the words elements and/or points:
“psychologist
It is through friendships that teenagers learn to take responsibility, provide support, and give their loyalty to non- family members. It is also in teenage friendships that young people find confidants with whom to share thoughts and feelings that they are not comfortable sharing with their parents. Such sharing becomes one of the elements of true intimacy, which will be established later.”
—David Elkind (20th century)
“Sometimes apparent resemblances of character will bring two men together and for a certain time unite them. But their mistake gradually becomes evident, and they are astonished to find themselves not only far apart, but even repelled, in some sort, at all their points of contact.”
—Sébastien-Roch Nicolas De Chamfort (17411794)