Homogeneous Coordinates - Elements Other Than Points

Elements Other Than Points

The equation of a line in the projective plane may be given as sx + ty + uz = 0 where s, t and u are constants. Each triple (s, t, u) determines a line, the line determined is unchanged if it is multiplied by a nonzero scalar, and at least one of s, t and u must be non-zero. So the triple (s, t, u) may be taken to be homogeneous coordinates of a line in the projective plane, that is line coordinates as opposed to point coordinates. If in sx + ty + uz = 0 the letters s, t and u are taken as variables and x, y and z are taken as constants then equation becomes an equation of a set of lines in the space of all lines in the plane. Geometrically it represents the set of lines that pass though the point (x, y, z) and may be interpreted as the equation of the point in line-coordinates. In the same way, planes in 3-space may be given sets of four homogeneous coordinates, and so on for higher dimensions.

Read more about this topic:  Homogeneous Coordinates

Famous quotes containing the words elements and/or points:

    The Laws of Nature are just, but terrible. There is no weak mercy in them. Cause and consequence are inseparable and inevitable. The elements have no forbearance. The fire burns, the water drowns, the air consumes, the earth buries. And perhaps it would be well for our race if the punishment of crimes against the Laws of Man were as inevitable as the punishment of crimes against the Laws of Nature—were Man as unerring in his judgments as Nature.
    Henry Wadsworth Longfellow (1807–1882)

    Wonderful “Force of Public Opinion!” We must act and walk in all points as it prescribes; follow the traffic it bids us, realise the sum of money, the degree of “influence” it expects of us, or we shall be lightly esteemed; certain mouthfuls of articulate wind will be blown at us, and this what mortal courage can front?
    Thomas Carlyle (1795–1881)