Properties
The following three properties follow directly from the definition, by choosing suitable solutions of the diophantine equation above:
- If a is a square, then (a, b) = 1 for all b.
- For all a,b in K×, (a, b) = (b, a).
- For any a in K× such that a−1 is also in K×, we have (a, 1−a) = 1.
The (bi)multiplicativity, i.e.,
- (a, b1b2) = (a, b1)·(a, b2)
for any a, b1 and b2 in K× is, however, more difficult to prove, and requires the development of local class field theory.
The third property shows that the Hilbert symbol is an example of a Steinberg symbol and thus factors over the second Milnor K-group, which is by definition
- K× ⊗ K× / (a ⊗ 1−a, a ∈ K× \ {1})
By the first property it even factors over . This is the first step towards the Milnor conjecture.
Read more about this topic: Hilbert Symbol
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)