Kaplansky Radical
The Hilbert symbol on a field F defines a map
where Br(F) is the Brauer group of F. The kernel of this mapping, the elements a such that (a,b)=1 for all b, is the Kaplansky radical of F.
The radical is a subgroup of F*/F*2, identified with a subgroup of F*. The radical contains is equal to F* if and only if F is not formally real and has u-invariant at most 2.
Read more about this topic: Hilbert Symbol
Famous quotes containing the word radical:
“Men have defined the parameters of every subject. All feminist arguments, however radical in intent or consequence, are with or against assertions or premises implicit in the male system, which is made credible or authentic by the power of men to name.”
—Andrea Dworkin (b. 1946)
Related Phrases
Related Words