Hilbert Symbol - Kaplansky Radical

Kaplansky Radical

The Hilbert symbol on a field F defines a map

where Br(F) is the Brauer group of F. The kernel of this mapping, the elements a such that (a,b)=1 for all b, is the Kaplansky radical of F.

The radical is a subgroup of F*/F*2, identified with a subgroup of F*. The radical contains is equal to F* if and only if F is not formally real and has u-invariant at most 2.

Read more about this topic:  Hilbert Symbol

Famous quotes containing the word radical:

    A radical is one of whom people say “He goes too far.” A conservative, on the other hand, is one who “doesn’t go far enough.” Then there is the reactionary, “one who doesn’t go at all.” All these terms are more or less objectionable, wherefore we have coined the term “progressive.” I should say that a progressive is one who insists upon recognizing new facts as they present themselves—one who adjusts legislation to these new facts.
    Woodrow Wilson (1856–1924)