Hilbert Symbol - Kaplansky Radical

Kaplansky Radical

The Hilbert symbol on a field F defines a map

where Br(F) is the Brauer group of F. The kernel of this mapping, the elements a such that (a,b)=1 for all b, is the Kaplansky radical of F.

The radical is a subgroup of F*/F*2, identified with a subgroup of F*. The radical contains is equal to F* if and only if F is not formally real and has u-invariant at most 2.

Read more about this topic:  Hilbert Symbol

Famous quotes containing the word radical:

    We, when we sow the seeds of doubt deeper than the most up-to- date and modish free-thought has ever dreamed of doing, we well know what we are about. Only out of radical skepsis, out of moral chaos, can the Absolute spring, the anointed Terror of which the time has need.
    Thomas Mann (1875–1955)