Higgs Boson - Technical Aspects and Mathematical Formulation

Technical Aspects and Mathematical Formulation

See also: Standard Model (mathematical formulation)

In the Standard Model, the Higgs field is a four-component scalar field that forms a complex doublet of the weak isospin SU(2) symmetry:


\phi=\frac{1}{\sqrt{2}}
\left(
\begin{array}{c}
\phi^1 + i\phi^2 \\ \phi^0+i\phi^3
\end{array}
\right)\;,

(1)

while the field has charge +1/2 under the weak hypercharge U(1) symmetry (in the convention where the electric charge, Q, the weak isospin, I3, and the weak hypercharge, Y, are related by Q = I3 + Y).

The Higgs part of the Lagrangian is

(2)

where and are the gauge bosons of the SU(2) and U(1) symmetries, and their respective coupling constants, (where are the Pauli matrices) a complete set generators of the SU(2) symmetry, and and, so that the ground state breaks the SU(2) symmetry (see figure). The ground state of the Higgs field (the bottom of the potential) is degenerate with different ground states related to each other by a SU(2) gauge transformation. It is always possible to pick a gauge such that in the ground state . The expectation value of in the ground state (the vacuum expectation value or vev) is then, where . The measured value of this parameter is ~246 GeV/c2. It has units of mass, and is the only free parameter of the Standard Model that is not a dimensionless number. Quadratic terms in and arise, which give masses to the W and Z bosons:

(3)

(4)

with their ratio determining the Weinberg angle, and leave a massless U(1) photon, .

The quarks and the leptons interact with the Higgs field through Yukawa interaction terms:

\begin{align}\mathcal{L}_{Y} =
&-\lambda_u^{ij}\frac{\phi^0-i\phi^3}{\sqrt{2}}\overline u_L^i u_R^j
+\lambda_u^{ij}\frac{\phi^1-i\phi^2}{\sqrt{2}}\overline d_L^i u_R^j\\
&-\lambda_d^{ij}\frac{\phi^0+i\phi^3}{\sqrt{2}}\overline d_L^i d_R^j
-\lambda_d^{ij}\frac{\phi^1+i\phi^2}{\sqrt{2}}\overline u_L^i d_R^j\\
&-\lambda_e^{ij}\frac{\phi^0+i\phi^3}{\sqrt{2}}\overline e_L^i e_R^j
-\lambda_e^{ij}\frac{\phi^1+i\phi^2}{\sqrt{2}}\overline \nu_L^i e_R^j
+ \textrm{h.c.},\end{align}

(5)

where are left-handed and right-handed quarks and leptons of the ith generation, are matrices of Yukawa couplings where h.c. denotes the hermitian conjugate terms. In the symmetry breaking ground state, only the terms containing remain, giving rise to mass terms for the fermions. Rotating the quark and lepton fields to the basis where the matrices of Yukawa couplings are diagonal, one gets

(6)

where the masses of the fermions are, and denote the eigenvalues of the Yukawa matrices.

Read more about this topic:  Higgs Boson

Famous quotes containing the words technical, aspects, mathematical and/or formulation:

    I rather think the cinema will die. Look at the energy being exerted to revive it—yesterday it was color, today three dimensions. I don’t give it forty years more. Witness the decline of conversation. Only the Irish have remained incomparable conversationalists, maybe because technical progress has passed them by.
    Orson Welles (1915–1984)

    I suppose an entire cabinet of shells would be an expression of the whole human mind; a Flora of the whole globe would be so likewise, or a history of beasts; or a painting of all the aspects of the clouds. Everything is significant.
    Ralph Waldo Emerson (1803–1882)

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)

    You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.
    Gerard Manley Hopkins (1844–1889)