Quantum Triviality
In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only allowed value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. Thus, surprisingly, a classical theory that appears to describe interacting particles can, when realized as a quantum field theory, become a "trivial" theory of noninteracting free particles. This phenomenon is referred to as quantum triviality. Strong evidence supports the idea that a field theory involving only a scalar Higgs boson is trivial in four spacetime dimensions, but the situation for realistic models including other particles in addition to the Higgs boson is not known in general. Nevertheless, because the Higgs boson plays a central role in the Standard Model of particle physics, the question of triviality in Higgs models is of great importance.
This Higgs triviality is similar to the Landau pole problem in quantum electrodynamics, where this quantum theory may be inconsistent at very high momentum scales unless the renormalized charge is set to zero, i.e., unless the field theory has no interactions. The Landau pole question is generally considered to be of minor academic interest for quantum electrodynamics because of the inaccessibly large momentum scale at which the inconsistency appears. This is not however the case in theories that involve the elementary scalar Higgs boson, as the momentum scale at which a "trivial" theory exhibits inconsistencies may be accessible to present experimental efforts such as at the LHC. In these Higgs theories, the interactions of the Higgs particle with itself are posited to generate the masses of the W and Z bosons, as well as lepton masses like those of the electron and muon. If realistic models of particle physics such as the Standard Model suffer from triviality issues, the idea of an elementary scalar Higgs particle may have to be modified or abandoned.
The situation becomes more complex in theories that involve other particles however. In fact, the addition of other particles can turn a trivial theory into a nontrivial one, at the cost of introducing constraints. Depending on the details of the theory, the Higgs mass can be bounded or even predictable. These quantum triviality constraints are in sharp contrast to the picture one derives at the classical level, where the Higgs mass is a free parameter.
Read more about Quantum Triviality: Triviality and The Renormalization Group, See Also
Famous quotes containing the words quantum and/or triviality:
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“nor till the poets among us can be literalists of the imaginationMabove insolence and triviality and can present
for inspection, imaginary gardens with real toads in them, shall we have
it.”
—Marianne Moore (18871972)