Heron's Formula - Proof

Proof

A modern proof, which uses algebra and is quite unlike the one provided by Heron (in his book Metrica), follows. Let a, b, c be the sides of the triangle and A, B, C the angles opposite those sides. We have

by the law of cosines. From this proof get the algebraic statement:

The altitude of the triangle on base a has length b·sin(C), and it follows


\begin{align}
T & = \frac{1}{2} (\mbox{base}) (\mbox{altitude}) \\
& = \frac{1}{2} ab\sin \widehat C \\
& = \frac{1}{4}\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2} \\
& = \frac{1}{4}\sqrt{(2a b -(a^2 +b^2 -c^2))(2a b +(a^2 +b^2 -c^2))} \\
& = \frac{1}{4}\sqrt{(c^2 -(a -b)^2)((a +b)^2 -c^2)} \\
& = \sqrt{\frac{(c -(a -b))(c +(a -b))((a +b) -c)((a +b) +c)}{16}} \\
& = \sqrt{\frac{(b + c - a)}{2}\frac{(a + c - b)}{2}\frac{(a + b - c)}{2}\frac{(a + b + c)}{2}} \\
& = \sqrt{\frac{(a + b + c)}{2}\frac{(b + c - a)}{2}\frac{(a + c - b)}{2}\frac{(a + b - c)}{2}} \\
& = \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}.
\end{align}

The difference of two squares factorization was used in two different steps.

Read more about this topic:  Heron's Formula

Famous quotes containing the word proof:

    O, popular applause! what heart of man
    Is proof against thy sweet, seducing charms?
    William Cowper (1731–1800)

    The moment a man begins to talk about technique that’s proof that he is fresh out of ideas.
    Raymond Chandler (1888–1959)

    The chief contribution of Protestantism to human thought is its massive proof that God is a bore.
    —H.L. (Henry Lewis)