Heron's Formula - Proof

Proof

A modern proof, which uses algebra and is quite unlike the one provided by Heron (in his book Metrica), follows. Let a, b, c be the sides of the triangle and A, B, C the angles opposite those sides. We have

by the law of cosines. From this proof get the algebraic statement:

The altitude of the triangle on base a has length b·sin(C), and it follows


\begin{align}
T & = \frac{1}{2} (\mbox{base}) (\mbox{altitude}) \\
& = \frac{1}{2} ab\sin \widehat C \\
& = \frac{1}{4}\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2} \\
& = \frac{1}{4}\sqrt{(2a b -(a^2 +b^2 -c^2))(2a b +(a^2 +b^2 -c^2))} \\
& = \frac{1}{4}\sqrt{(c^2 -(a -b)^2)((a +b)^2 -c^2)} \\
& = \sqrt{\frac{(c -(a -b))(c +(a -b))((a +b) -c)((a +b) +c)}{16}} \\
& = \sqrt{\frac{(b + c - a)}{2}\frac{(a + c - b)}{2}\frac{(a + b - c)}{2}\frac{(a + b + c)}{2}} \\
& = \sqrt{\frac{(a + b + c)}{2}\frac{(b + c - a)}{2}\frac{(a + c - b)}{2}\frac{(a + b - c)}{2}} \\
& = \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}.
\end{align}

The difference of two squares factorization was used in two different steps.

Read more about this topic:  Heron's Formula

Famous quotes containing the word proof:

    a meek humble Man of modest sense,
    Who preaching peace does practice continence;
    Whose pious life’s a proof he does believe,
    Mysterious truths, which no Man can conceive.
    John Wilmot, 2d Earl Of Rochester (1647–1680)

    The moment a man begins to talk about technique that’s proof that he is fresh out of ideas.
    Raymond Chandler (1888–1959)

    War is a beastly business, it is true, but one proof we are human is our ability to learn, even from it, how better to exist.
    M.F.K. Fisher (1908–1992)