Heron's Formula
In geometry, Heron's (or Hero's) formula, named after Heron of Alexandria, states that the area T of a triangle whose sides have lengths a, b, and c is
where s is the semiperimeter of the triangle:
Heron's formula can also be written as:
Heron's formula is distinguished from other formulas for the area of a triangle, such as half the base times the height or half the modulus of a cross product of two sides, by requiring no arbitrary choice of side as base or vertex as origin.
Read more about Heron's Formula: History, Proof, Proof Using The Pythagorean Theorem, Numerical Stability, Generalizations
Famous quotes containing the word formula:
“Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the beings which compose it, if moreover this intelligence were vast enough to submit these data to analysis, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.”
—Pierre Simon De Laplace (17491827)