The Connection With The Weyl Algebra
The Lie algebra of the Heisenberg group was described above as a Lie algebra of matrices. The Poincaré–Birkhoff–Witt theorem applies to determine the universal enveloping algebra . Among other properties, the universal enveloping algebra is an associative algebra into which injectively imbeds. By Poincaré–Birkhoff–Witt, it is the free vector space generated by the monomials
where the exponents are all non-negative. Thus consists of real polynomials
with the commutation relations
The algebra is closely related to the algebra of differential operators on Rn with polynomial coefficients, since any such operator has a unique representation in the form
This algebra is called the Weyl algebra. It follows from abstract nonsense that the Weyl algebra Wn is a quotient of . However, this is also easy to see directly from the above representations; viz. by the mapping
Read more about this topic: Heisenberg Group
Famous quotes containing the words connection and/or algebra:
“We say that the hour of death cannot be forecast, but when we say this we imagine that hour as placed in an obscure and distant future. It never occurs to us that it has any connection with the day already begun or that death could arrive this same afternoon, this afternoon which is so certain and which has every hour filled in advance.”
—Marcel Proust (18711922)
“Poetry has become the higher algebra of metaphors.”
—José Ortega Y Gasset (18831955)