Heat Engine - Efficiency

Efficiency

The efficiency of a heat engine relates how much useful work is output for a given amount of heat energy input.

From the laws of thermodynamics:

where
is the work extracted from the engine. (It is negative since work is done by the engine.)
is the heat energy taken from the high temperature system. (It is negative since heat is extracted from the source, hence is positive.)
is the heat energy delivered to the cold temperature system. (It is positive since heat is added to the sink.)

In other words, a heat engine absorbs heat energy from the high temperature heat source, converting part of it to useful work and delivering the rest to the cold temperature heat sink.

In general, the efficiency of a given heat transfer process (whether it be a refrigerator, a heat pump or an engine) is defined informally by the ratio of "what you get out" to "what you put in."

In the case of an engine, one desires to extract work and puts in a heat transfer.

The theoretical maximum efficiency of any heat engine depends only on the temperatures it operates between. This efficiency is usually derived using an ideal imaginary heat engine such as the Carnot heat engine, although other engines using different cycles can also attain maximum efficiency. Mathematically, this is because in reversible processes, the change in entropy of the cold reservoir is the negative of that of the hot reservoir (i.e., ), keeping the overall change of entropy zero. Thus:

where is the absolute temperature of the hot source and that of the cold sink, usually measured in kelvin. Note that is positive while is negative; in any reversible work-extracting process, entropy is overall not increased, but rather is moved from a hot (high-entropy) system to a cold (low-entropy one), decreasing the entropy of the heat source and increasing that of the heat sink.

The reasoning behind this being the maximal efficiency goes as follows. It is first assumed that if a more efficient heat engine than a Carnot engine is possible, then it could be driven in reverse as a heat pump. Mathematical analysis can be used to show that this assumed combination would result in a net decrease in entropy. Since, by the second law of thermodynamics, this is statistically improbable to the point of exclusion, the Carnot efficiency is a theoretical upper bound on the reliable efficiency of any process.

Empirically, no heat engine has ever been shown to run at a greater efficiency than a Carnot cycle heat engine.

Figure 2 and Figure 3 show variations on Carnot cycle efficiency. Figure 2 indicates how efficiency changes with an increase in the heat addition temperature for a constant compressor inlet temperature. Figure 3 indicates how the efficiency changes with an increase in the heat rejection temperature for a constant turbine inlet temperature.

Read more about this topic:  Heat Engine

Famous quotes containing the word efficiency:

    I’ll take fifty percent efficiency to get one hundred percent loyalty.
    Samuel Goldwyn (1882–1974)

    Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, nature’s laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through nature’s universal laws and rules.
    Baruch (Benedict)

    “Never hug and kiss your children! Mother love may make your children’s infancy unhappy and prevent them from pursuing a career or getting married!” That’s total hogwash, of course. But it shows on extreme example of what state-of-the-art “scientific” parenting was supposed to be in early twentieth-century America. After all, that was the heyday of efficiency experts, time-and-motion studies, and the like.
    Lawrence Kutner (20th century)