Properties of Hausdorff Measures
Note that if d is a positive integer, the d dimensional Hausdorff measure of Rd is a rescaling of usual d-dimensional Lebesgue measure which is normalized so that the Lebesgue measure of the unit cube d is 1. In fact, for any Borel set E,
where αd is the volume of the unit d-ball; it can be expressed using Euler's gamma function
Remark. Some authors adopt a definition of Hausdorff measure slightly different from the one chosen here, the difference being that it is normalized in such a way that Hausdorff d-dimensional measure in the case of Euclidean space coincides exactly with Lebesgue measure.
Read more about this topic: Hausdorff Measure
Famous quotes containing the words properties of, properties and/or measures:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“They who have been bred in the school of politics fail now and always to face the facts. Their measures are half measures and makeshifts merely. They put off the day of settlement, and meanwhile the debt accumulates.”
—Henry David Thoreau (18171862)