In mathematics, in particular in measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. A general theory of outer measures was first introduced by Carathéodory to provide a basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory (outer measures are for example used in the proof of the fundamental Carathéodory's extension theorem), and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension.
Measures are generalizations of length, area and volume, but are useful for much more abstract and irregular sets than intervals in R or balls in R3. One might expect to define a generalized measuring function φ on R that fulfils the following requirements:
- Any interval of reals has measure b − a
- The measuring function φ is a non-negative extended real-valued function defined for all subsets of R.
- Translation invariance: For any set A and any real x, the sets A and A+x have the same measure (where )
- Countable additivity: for any sequence (Aj) of pairwise disjoint subsets of X
It turns out that these requirements are incompatible conditions; see non-measurable set. The purpose of constructing an outer measure on all subsets of X is to pick out a class of subsets (to be called measurable) in such a way as to satisfy the countable additivity property.
Read more about Outer Measure: Formal Definitions, Outer Measure and Topology, Construction of Outer Measures
Famous quotes containing the words outer and/or measure:
“When human beings have been fascinated by the contemplation of their own hearts, the more intricate biological pattern of the female has become a model for the artist, the mystic, and the saint. When mankind turns instead to what can be done, altered, built, invented, in the outer world, all natural properties of men, animals, or metals become handicaps to be altered rather than clues to be followed.”
—Margaret Mead (19011978)
“Cowardice and courage are never without a measure of affectation. Nor is love. Feelings are never true. They play with their mirrors.”
—Jean Baudrillard (b. 1929)