Statement
The Hausdorff maximal principle states that, in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset. Here a maximal totally-ordered subset is one that, if enlarged in any way, does not remain totally ordered. The maximal set produced by the principle is not unique, in general; there may be many maximal totally ordered subsets containing a given totally ordered subset.
An equivalent form of the principle is that in every partially ordered set there exists a maximal totally ordered subset.
To prove that it follows from the original form, let A be a poset. Then is a totally ordered subset of A, hence there exists a maximal totally ordered subset containing, in particular A contains a maximal totally ordered subset.
For the converse direction, let A be a partially ordered set and T a totally ordered subset of A. Then
is partially ordered by set inclusion, therefore it contains a maximal totally ordered subset P. Then the set satisfies the desired properties.
The proof that the Hausdorff maximal principle is equivalent to Zorn's lemma is very similar to this proof.
Read more about this topic: Hausdorff Maximal Principle
Famous quotes containing the word statement:
“If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.”
—J.L. (John Langshaw)
“Children should know there are limits to family finances or they will confuse we cant afford that with they dont want me to have it. The first statement is a realistic and objective assessment of a situation, while the other carries an emotional message.”
—Jean Ross Peterson (20th century)
“The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.”
—Andrew Jackson (17671845)