Statement
The Hausdorff maximal principle states that, in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset. Here a maximal totally-ordered subset is one that, if enlarged in any way, does not remain totally ordered. The maximal set produced by the principle is not unique, in general; there may be many maximal totally ordered subsets containing a given totally ordered subset.
An equivalent form of the principle is that in every partially ordered set there exists a maximal totally ordered subset.
To prove that it follows from the original form, let A be a poset. Then is a totally ordered subset of A, hence there exists a maximal totally ordered subset containing, in particular A contains a maximal totally ordered subset.
For the converse direction, let A be a partially ordered set and T a totally ordered subset of A. Then
is partially ordered by set inclusion, therefore it contains a maximal totally ordered subset P. Then the set satisfies the desired properties.
The proof that the Hausdorff maximal principle is equivalent to Zorn's lemma is very similar to this proof.
Read more about this topic: Hausdorff Maximal Principle
Famous quotes containing the word statement:
“After the first powerful plain manifesto
The black statement of pistons, without more fuss
But gliding like a queen, she leaves the station.”
—Stephen Spender (19091995)
“The force of truth that a statement imparts, then, its prominence among the hordes of recorded observations that I may optionally apply to my own life, depends, in addition to the sense that it is argumentatively defensible, on the sense that someone like me, and someone I like, whose voice is audible and who is at least notionally in the same room with me, does or can possibly hold it to be compellingly true.”
—Nicholson Baker (b. 1957)
“Truth is that concordance of an abstract statement with the ideal limit towards which endless investigation would tend to bring scientific belief, which concordance the abstract statement may possess by virtue of the confession of its inaccuracy and one-sidedness, and this confession is an essential ingredient of truth.”
—Charles Sanders Peirce (18391914)