Statement
The Hausdorff maximal principle states that, in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset. Here a maximal totally-ordered subset is one that, if enlarged in any way, does not remain totally ordered. The maximal set produced by the principle is not unique, in general; there may be many maximal totally ordered subsets containing a given totally ordered subset.
An equivalent form of the principle is that in every partially ordered set there exists a maximal totally ordered subset.
To prove that it follows from the original form, let A be a poset. Then is a totally ordered subset of A, hence there exists a maximal totally ordered subset containing, in particular A contains a maximal totally ordered subset.
For the converse direction, let A be a partially ordered set and T a totally ordered subset of A. Then
is partially ordered by set inclusion, therefore it contains a maximal totally ordered subset P. Then the set satisfies the desired properties.
The proof that the Hausdorff maximal principle is equivalent to Zorn's lemma is very similar to this proof.
Read more about this topic: Hausdorff Maximal Principle
Famous quotes containing the word statement:
“The new statement is always hated by the old, and, to those dwelling in the old, comes like an abyss of skepticism.”
—Ralph Waldo Emerson (18031882)
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)
“After the first powerful plain manifesto
The black statement of pistons, without more fuss
But gliding like a queen, she leaves the station.”
—Stephen Spender (19091995)