Related Concepts
A measure for the dissimilarity of two shapes is given by Hausdorff distance up to isometry, denoted DH. Namely, let X and Y be two compact figures in a metric space M (usually a Euclidean space); then DH(X,Y) is the infimum of dH(I(X),Y) along all isometries I of the metric space M to itself. This distance measures how far the shapes X and Y are from being isometric.
The Gromov–Hausdorff convergence is a related idea: we measure the distance of two metric spaces M and N by taking the infimum of dH(I(M),J(N)) along all isometric embeddings I:M→L and J:N→L into some common metric space L.
Read more about this topic: Hausdorff Distance
Famous quotes containing the words related and/or concepts:
“The content of a thought depends on its external relations; on the way that the thought is related to the world, not on the way that it is related to other thoughts.”
—Jerry Alan Fodor (b. 1935)
“Germany collapsed as a result of having engaged in a struggle for empire with the concepts of provincial politics.”
—Albert Camus (19131960)