Hausdorff Distance - Related Concepts

Related Concepts

A measure for the dissimilarity of two shapes is given by Hausdorff distance up to isometry, denoted DH. Namely, let X and Y be two compact figures in a metric space M (usually a Euclidean space); then DH(X,Y) is the infimum of dH(I(X),Y) along all isometries I of the metric space M to itself. This distance measures how far the shapes X and Y are from being isometric.

The Gromov–Hausdorff convergence is a related idea: we measure the distance of two metric spaces M and N by taking the infimum of dH(I(M),J(N)) along all isometric embeddings I:ML and J:NL into some common metric space L.

Read more about this topic:  Hausdorff Distance

Famous quotes containing the words related and/or concepts:

    So-called “austerity,” the stoic injunction, is the path towards universal destruction. It is the old, the fatal, competitive path. “Pull in your belt” is a slogan closely related to “gird up your loins,” or the guns-butter metaphor.
    Wyndham Lewis (1882–1957)

    During our twenties...we act toward the new adulthood the way sociologists tell us new waves of immigrants acted on becoming Americans: we adopt the host culture’s values in an exaggerated and rigid fashion until we can rethink them and make them our own. Our idea of what adults are and what we’re supposed to be is composed of outdated childhood concepts brought forward.
    Roger Gould (20th century)