Hausdorff Distance - Related Concepts

Related Concepts

A measure for the dissimilarity of two shapes is given by Hausdorff distance up to isometry, denoted DH. Namely, let X and Y be two compact figures in a metric space M (usually a Euclidean space); then DH(X,Y) is the infimum of dH(I(X),Y) along all isometries I of the metric space M to itself. This distance measures how far the shapes X and Y are from being isometric.

The Gromov–Hausdorff convergence is a related idea: we measure the distance of two metric spaces M and N by taking the infimum of dH(I(M),J(N)) along all isometric embeddings I:ML and J:NL into some common metric space L.

Read more about this topic:  Hausdorff Distance

Famous quotes containing the words related and/or concepts:

    Perhaps it is nothingness which is real and our dream which is non-existent, but then we feel think that these musical phrases, and the notions related to the dream, are nothing too. We will die, but our hostages are the divine captives who will follow our chance. And death with them is somewhat less bitter, less inglorious, perhaps less probable.
    Marcel Proust (1871–1922)

    When you have broken the reality into concepts you never can reconstruct it in its wholeness.
    William James (1842–1910)