Hausdorff Distance - Related Concepts

Related Concepts

A measure for the dissimilarity of two shapes is given by Hausdorff distance up to isometry, denoted DH. Namely, let X and Y be two compact figures in a metric space M (usually a Euclidean space); then DH(X,Y) is the infimum of dH(I(X),Y) along all isometries I of the metric space M to itself. This distance measures how far the shapes X and Y are from being isometric.

The Gromov–Hausdorff convergence is a related idea: we measure the distance of two metric spaces M and N by taking the infimum of dH(I(M),J(N)) along all isometric embeddings I:ML and J:NL into some common metric space L.

Read more about this topic:  Hausdorff Distance

Famous quotes containing the words related and/or concepts:

    The content of a thought depends on its external relations; on the way that the thought is related to the world, not on the way that it is related to other thoughts.
    Jerry Alan Fodor (b. 1935)

    Germany collapsed as a result of having engaged in a struggle for empire with the concepts of provincial politics.
    Albert Camus (1913–1960)