Harmonic Series (mathematics) - Rate of Divergence

Rate of Divergence

The harmonic series diverges very slowly. For example, the sum of the first 1043 terms is less than 100. This is because the partial sums of the series have logarithmic growth. In particular,

where is the Euler–Mascheroni constant and ~ which approaches 0 as goes to infinity. This result is due to Leonhard Euler. He proved also the more striking fact that the sum which includes only the reciprocals of primes also diverges, i.e.

Read more about this topic:  Harmonic Series (mathematics)

Famous quotes containing the word rate:

    Writing a book I have found to be like building a house. A man forms a plan, and collects materials. He thinks he has enough to raise a large and stately edifice; but after he has arranged, compacted and polished, his work turns out to be a very small performance. The authour however like the builder, knows how much labour his work has cost him; and therefore estimates it at a higher rate than other people think it deserves,
    James Boswell (1740–1795)