Harmonic Series (mathematics)
In mathematics, the harmonic series is the divergent infinite series:
Its name derives from the concept of overtones, or harmonics in music: the wavelengths of the overtones of a vibrating string are 1/2, 1/3, 1/4, etc., of the string's fundamental wavelength. Every term of the series after the first is the harmonic mean of the neighboring terms; the phrase harmonic mean likewise derives from music.
Read more about Harmonic Series (mathematics): History, Paradoxes, Divergence, Rate of Divergence, Partial Sums
Famous quotes containing the words harmonic and/or series:
“For decades child development experts have erroneously directed parents to sing with one voice, a unison chorus of values, politics, disciplinary and loving styles. But duets have greater harmonic possibilities and are more interesting to listen to, so long as cacophony or dissonance remains at acceptable levels.”
—Kyle D. Pruett (20th century)
“History is nothing but a procession of false Absolutes, a series of temples raised to pretexts, a degradation of the mind before the Improbable.”
—E.M. Cioran (b. 1911)