Hall's Marriage Theorem - Proof of The Graph Theoretic Version

Proof of The Graph Theoretic Version

We first prove: If a bipartite graph G = (X + Y, E) = G(X, Y) has an X-saturating matching, then |NG(W)| ≥ |W| for all WX.

Suppose M is a matching that saturates every vertex of X. Let the set of all vertices in Y matched by M to a given W be denoted as M(W). Therefore, |M(W)|=|W|, by the definition of matching. But M(W) ⊆ NG(W), since all elements of M(W) are neighbours of W. So, |NG(W)| ≥ |M(W)| and hence, |NG(W)| ≥ |W|.

Now we prove: If |NG(W)| ≥ |W| for all W ⊆ X, then G(X,Y) has a matching that saturates every vertex in X.

Assume for contradiction that G(X,Y) is a bipartite graph that has no matching that saturates all vertices of X. Let M be a maximum matching, and u a vertex not saturated by M. Consider all augmenting paths (i.e., paths in G alternately using edges outside and inside M) starting from u. Let the set of all points in Y connected to u by these augmenting paths be T, and the set of all points in X connected to u by these augmenting paths (including u itself) be W. No maximal augmenting path can end in a vertex in Y, lest we could augment M to a strictly larger matching. Thus every vertex in T is matched by M to a vertex in W. Conversely, every vertex v in W \ {u} is matched by M to a vertex in T (namely, the vertex preceding v on an augmenting path ending at v). Thus, M provides a bijection of W \ {u} and T, which implies |W| = |T| + 1. On the other hand, NG(W) ⊆ T: let v in Y be connected to a vertex w in W. If the edge (w,v) is in M, then v is in T by the previous part of the proof, otherwise we can take an augmenting path ending in w and extend it with v, showing that v is in T. Hence, |NG(W)| = |T| = |W| − 1, a contradiction.

Read more about this topic:  Hall's Marriage Theorem

Famous quotes containing the words proof of the, proof of, proof, graph and/or version:

    When children feel good about themselves, it’s like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.
    Stephanie Martson (20th century)

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.
    Marshall McLuhan (1911–1980)

    It is never the thing but the version of the thing:
    The fragrance of the woman not her self,
    Her self in her manner not the solid block,
    The day in its color not perpending time,
    Time in its weather, our most sovereign lord,
    The weather in words and words in sounds of sound.
    Wallace Stevens (1879–1955)