Hall's Marriage Theorem

In combinatorial mathematics, Hall's marriage theorem, or simply Hall's Theorem, gives a necessary and sufficient condition for being able to select a distinct element from each of a collection of finite sets. It was proved by Philip Hall (1935).

Read more about Hall's Marriage Theorem:  Definitions and Statement of The Theorem, Discussion and Examples, Graph Theoretic Formulation, Proof of The Graph Theoretic Version, Marshall Hall Jr. Variant, Applications, Marriage Condition Does Not Extend, Logical Equivalences

Famous quotes containing the words hall, marriage and/or theorem:

    When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconscious—to get rid of boundaries, not to create them.
    —Edward T. Hall (b. 1914)

    Worst, when this sensualism intrudes into the education of young women, and withers the hope and affection of human nature, by teaching that marriage signifies nothing but a housewife’s thrift, and that woman’s life has no other aim.
    Ralph Waldo Emerson (1803–1882)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)