Hadamard Matrix - Generalizations and Special Cases

Generalizations and Special Cases

Many generalizations and special cases of Hadamard matrices have been investigated in the mathematical literature. One basic generalization is the weighing matrix, a square matrix in which entries may also be zero and which satisfies for some w, its weight. A weighing matrix with its weight equal to its order is a Hadamard matrix.

Another generalization defines a complex Hadamard matrix to be a matrix in which the entries are complex numbers of unit modulus and which satisfies H H*= n In where H* is the conjugate transpose of H. Complex Hadamard matrices arise in the study of operator algebras and the theory of quantum computation. Butson-type Hadamard matrices are complex Hadamard matrices in which the entries are taken to be qth roots of unity. The term "complex Hadamard matrix" has been used by some authors to refer specifically to the case q = 4.

Regular Hadamard matrices are real Hadamard matrices whose row and column sums are all equal. A necessary condition on the existence of a regular n×n Hadamard matrix is that n be a perfect square. A circulant matrix is manifestly regular, and therefore a circulant Hadamard matrix would have to be of perfect square order. Moreover, if an n×n circulant Hadamard matrix existed with n>1 then n would necessarily have to be of the form 4u2 with u odd.

The circulant Hadamard matrix conjecture, however, asserts that, apart from the known 1×1 and 4×4 examples, no such matrices exist. This was verified for all but 26 values of u less than 104.

Read more about this topic:  Hadamard Matrix

Famous quotes containing the words special and/or cases:

    With a generous endowment of motherhood provided by legislation, with all laws against voluntary motherhood and education in its methods repealed, with the feminist ideal of education accepted in home and school, and with all special barriers removed in every field of human activity, there is no reason why woman should not become almost a human thing. It will be time enough then to consider whether she has a soul.
    Crystal Eastman (1881–1928)

    For the most part, we are not where we are, but in a false position. Through an infirmity of our natures, we suppose a case, and put ourselves into it, and hence are in two cases at the same time, and it is doubly difficult to get out.
    Henry David Thoreau (1817–1862)