Hadamard Matrix

In mathematics, an Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. In geometric terms, this means that every two different rows in a Hadamard matrix represent two perpendicular vectors, while in combinatorial terms, it means that every two different rows have matching entries in exactly half of their columns and mismatched entries in the remaining columns. It is a consequence of this definition that the corresponding properties hold for columns as well as rows. The n-dimensional parallelotope spanned by the rows of an n×n Hadamard matrix has the maximum possible n-dimensional volume among parallelotopes spanned by vectors whose entries are bounded in absolute value by 1. Equivalently, a Hadamard matrix has maximal determinant among matrices with entries of absolute value less than or equal to 1 and so, is an extremal solution of Hadamard's maximal determinant problem.

Certain Hadamard matrices can almost directly be used as an error-correcting code using a Hadamard code (generalized in Reed–Muller codes), and are also used in balanced repeated replication (BRR), used by statisticians to estimate the variance of a parameter estimator.

Read more about Hadamard Matrix:  Properties, Sylvester's Construction, Alternative Construction, The Hadamard Conjecture, Equivalence of Hadamard Matrices, Skew Hadamard Matrices, Generalizations and Special Cases, Practical Applications

Famous quotes containing the word matrix:

    In all cultures, the family imprints its members with selfhood. Human experience of identity has two elements; a sense of belonging and a sense of being separate. The laboratory in which these ingredients are mixed and dispensed is the family, the matrix of identity.
    Salvador Minuchin (20th century)